SOLVING SIMPLE QUADRATIC EQUATIONS BY FACTORING

• Need some basic practice with quadratic equations first? <u>Identifying Quadratic Equations</u> Writing Quadratic Equations in Standard Form

(more mathematical cats)

To solve a quadratic equation by factoring:

- put it in standard form: $ax^2 + bx + c = 0$
- factor the left-hand side
- use the Zero Factor Law

EXAMPLES:

Solve: $x^2 = 2 - x$

Solution:

Write a nice, clean list of equivalent equations:

$$x^2 = 2 - x$$

(original equation)

$$x^2 + x - 2 = 0$$

(put in standard form: subtract 2 from both sides; add x to both

sides)

$$(x+2)(x-1) = 0$$

(factor the left-hand side)

$$x+2=0$$
 or $x-1=0$ (use the Zero Factor Law)

$$x = -2 \text{ or } x = 1$$

(solve the simpler equations)

$$(-2)^2 \stackrel{?}{=} 2 - (-2); \quad 4 = 4; \quad \text{Check!}$$

$$(1)^2 \stackrel{?}{=} 2-1; 1=1;$$
 Check!

Solve: (x+3)(x-2) = 0

Solution:

Note: Don't multiply it out!

If it's already in factored form, with zero on one side,

then be happy that a lot of the work has already been done for you.

$$(x+3)(x-2) = 0$$
 (original equation)

$$x + 3 = 0$$
 or $x - 2 = 0$ (use the Zero Factor Law)

$$x = -3$$
 or $x = 2$ (solve the simpler equations)

Check by substituting into the original equation:

$$(-3+3)(-3-2) \stackrel{?}{=} 0; 0 = 0;$$
 Check!

$$(2+3)(2-2) \stackrel{?}{=} 0; 0 = 0;$$
 Check!

Solve: (2x-3)(1-3x)=0

Solution:

Again, don't multiply it out!

When you have a product on one side, and zero on the other side, then you're all set to use the Zero Factor Law.

$$(2x-3)(1-3x) = 0$$
 (original equation)

$$2x - 3 = 0$$
 or $1 - 3x = 0$ (use the Zero Factor Law)

$$2x = 3$$
 or $1 = 3x$ (solve simpler equations)

$$x = \frac{3}{2}$$
 or $x = \frac{1}{3}$ (solve simpler equations)

$$(2 \cdot \frac{3}{2} - 3)(1 - 3 \cdot \frac{3}{2})) \stackrel{?}{=} 0; \quad 0 = 0;$$
 Check!

$$(2 \cdot \frac{1}{3} + 3)(1 - 3 \cdot \frac{1}{3}) \stackrel{?}{=} 0; \quad 0 = 0;$$
 Check!

Solve: $x^2 + 4x - 5 = 0$

Solution:

Note that it's already in standard form.

$$x^2 + 4x - 5 = 0$$

(original equation)

$$(x+5)(x-1)=0$$

(factor the left-hand side)

$$x + 5 = 0$$
 or $x - 1 = 0$

(use the Zero Factor Law)

$$x = -5$$
 or $x = 1$

(solve the simpler equations)

Check by substituting into the original equation:

$$(-5)^2 + 4(-5) - 5 \stackrel{?}{=} 0$$
; $25 - 20 - 5 \stackrel{?}{=} 0$; $0 = 0$; Check!

$$1^2 + 4(1) - 5 \stackrel{?}{=} 0$$
; $1 + 4 - 5 \stackrel{?}{=} 0$; $0 = 0$; Check!

Solve: $14 = -5x + x^2$

Solution:

$$14 = -5x + x^2 (original equation)$$

$$x^2 - 5x - 14 = 0$$
 (put in standard form: subtract 14 from both sides; write in the conventional way)

$$(x-7)(x+2) = 0$$
 (factor the left-hand side)

$$x-7=0$$
 or $x+2=0$ (use the Zero Factor Law)

$$x = 7$$
 or $x = -2$ (solve the simpler equations)

$$14 \stackrel{?}{=} -5(7) + 7^2$$
; $14 \stackrel{?}{=} -35 + 49$; $14 = 14$; Check!

$$14 \stackrel{?}{=} -5(-2) + (-2)^2$$
; $14 \stackrel{?}{=} 10 + 4$; $14 = 14$; Check!

Solve: $6x = 2x^2$

Solution:

When there's no constant term, the factoring is much easier:

$$6x = 2x^2$$

(original equation)

$$2x^2 - 6x = 0$$

(put in standard form: subtract 6x from both sides; write in the

conventional way)

$$x^2 - 3x = 0$$

(optional step: divide both sides by 2)

$$x(x - 3) = 0$$

(factor the left-hand side)

$$x = 0$$
 or $x - 3 = 0$

(use the Zero Factor Law)

$$x = 0$$
 or $x = 3$

(solve the simpler equations)

$$6 \cdot 0 \stackrel{?}{=} 2 \cdot 0^2$$
; $0 = 0$; Check!

$$6 \cdot 3 \stackrel{?}{=} 2 \cdot 3^2$$
; $18 = 18$; Check!